Warsaw University of Technology

COURSE OFFERED IN THE DOCTORAL SCHOOL

Code of the		4606-ES-00000	0061	Nor	ne of the course	Polish	S	ynteza filtrów elektry	cznych
course		4000-23-000001	BC-0001	INdi	ne of the course	English	S	ynthesis of electric fil	ters (SoFE)
Type of the course		Special courses							
Course coordinator		Dr hab. inż. Ada	ım Abramow	vicz					
Implementing unit		WEiTI		Scie	ntific discipline / disciplines*			unication technology I engineering	, automation,
Level of education		Doctoral	studies		Semester	Winter/Summer			
Language of the cour	se	English							
Type of assessment	:	Graded	credit	N	umber of hours in a semester	4	5	ECTS credits	3
Minimum number of participants		10)	N	Naximum number of participants	20	D	Available for studen (BSc, MSc)	ts Yes /No
Type of cl	asses		Lecture		Auditory classes	s Projec	ct classes	Laboratory	Seminar
Number of hours	in a we	in a week	2		0		1	0	0
Number of hours	in	a semester	30		0		15	0	0

* does not apply to the Researcher's Workshop

1. Prerequisites

Basic knowledge of circuit theory.

2. Course objectives

The aim of this course is to introduce students to the fundamentals of circuit analysis and synthesis if electric filters realized as passive circuits using lumped elements, transmission lines and resonators. Solving practical problems students gain knowledge on filter design.

3. Course content (separate for each type of classes)

Lecture

Frequency characteristics of filters. Transmittance. Amplitude and phase characteristics. Group delay. Conditions of physical realizability. Reaktance transformations. Freqency scaling and normalization. Immitance inverters. Impedance matching in assumed frequency band.

Filter approximations. Introduction to approximation theory. Types of filter characteristics: Butterworth, Chebyshev, elliptic, Gauss, Achiezer-Zolotarev etc.

Reactance circuit synthesis. Foster, Cauer and Darlington methods. Influence of lossy elements. Ladder filters. Computer design of filters.

Lumped element realization of filters. Influence of frequency on lumped elements. Realization of inductances. Losses and filter parameters: bandwidth, group delay. Quality factor of different elements.

Synthesis of direct coupled resonant circuits. Coupled resonant circuits. Magnetic, electric and mixed couplings. Eigenfrequency method.

Realization of filters for LF, RF and microwave frequency range. Microwave resonators and their parameters. Transmision lines. Richards transformatin. Microwave immitance inverters. Planar filters (including HTS filters). Diplexers and mutiplexers. Filter banks. Switched filters. Band-stop filters. Multibandthih filters.

Pulse transmission trough filters. Phase correctors. Linear phase filters.

Filters in electronic systems. Influence of filter parameters of receivers and transmitters. Distortions and interference.

Modern trends in filter realization. SAW, BAW, LTCC filters

Project

The project it to design a filter for a given frequency characteristic. The project will be based on analysis and simulation in high frequency structue symulator Microwave Office. The symulator can be used for simulations and optimization of structures consisting of lumped elements, distributed lements (like transmission lines) as well as synthesis of selected filters. Projects will be realized individually or in groups. The results of the projects will be presented at the end of semester in the form of short presentations (5-10 min.) given in front of all course attendees.

Project examples:

- 1. Band-stop filter with 10% relative bandwidth at 100 MHz center frequency.
- 2. Band-pass filter with conatant group delay within 20% relative bandwidth at 500 MHz.
- 3. Anti-interference filter for 50 Hz.
- 4. Band-pass filter with two transmission zeroes above passband, center frequency of 1 GHz and relative bandwidth of 3%.
- 5. Planar filter with dual mode resonators at 3 GHz.

4. Learni	ing outcomes		
	Learning outcomes description	Reference to the learning outcomes of the WUT DS	Learning outcomes verification methods*
	Knowledge		
K01	Student has knowledge on filter approximations	SD_W2, SD_W3	Results of the test and project
K02	Student has knowledge on lowpass prototype filters and frequency transformations	SD_W2, SD_W3	Results of the test and project
K03	Student has knowledge on filter realizations at different freuency bands	SD_W2, SD_W3	Results of the test and project
К04	Student has knwoledge on properties of real lumped elements, transmission lines and resonator used in filters	SD_W2, SD_W3	Results of the test and project
K05	Student has knowledge on synthesis and design methods of electric filters	SD_W2, SD_W3	Results of the test and project
	Skills		
S01	Student is capable to analyze and synthesize lumped element filters	SD_U1	Results of the written test and project evaluation
S02	Student is capable to design filters in different frequency bands	SD_U1, SD_U5	Results of the written test and project evaluation
S03	Student knows how to use "Microwave Office"	SD_U1	Project evaluation
	Social compete	nces	
SC01	The exchange of experiences and effective practice in team work	SD_K1, SD_K4	Results of the project evaluation
SC02	Experience in making a presentation in front of the audience and defending the presented results	SD_K1	Result of the presentation

*Allowed learning outcomes verification methods: exam; oral exam; written test; oral test; project evaluation; report evaluation; presentation evaluation; active participation during classes; homework; tests

5. Assessment criteria

After the middle of the semester the test concerning filter theory will be held. Last classes will be devoted to presentations of projects. The test The final result will be a sum of the test result and the project result. Na końcu semestru istnieje możliwość poprawy kolokwium. During the course up to 100 point can be scored. The test can bring up to 40 points. The score for the project is up to 50 point. The remaining 10 points can be scored for the

project presentation and for being active. To get course credit for satisfactory grade a student should score at least 50 points. Grading scale: <50 points.: grade 2 50-59 points: grade 3 60-69 points.: grade 3,5 70-79 points: grade 4 80-89 points: grade 4,5 90-100 points: grade 5

6. Literature

Basic References:

[1] Temes G. C., Mitry S. K. (red.): Teoria i projektowanie filtrów, WNT, Warszawa 1978.

[2] Matthaei G. L., Young L., Jones E. M. T.: *Microwave filters impedance matching networks and coupling structures*, McGraw–Hill, New York 1964

[3] Bellert S. T.: Zarys teorii syntezy liniowych układów elektrycznych, Wydawnictwa Politechniki Warszawskiej, Warszawa 1964.

[4] Izydorczyk J., Konopacki J.: *Filtry analogowe i cyfrowe*, Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, Katowice 2003.

[5] Abramowicz A.: Filtry mikrofalowe w systemach radiokomunikacyjnych, OWPW, Warszawa 2008
[6] Dobrowolski J.: Technika wielkich częstotliwości, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2001

Additional references for RF filters:

[1] Hunter I: Theory and Design of Microwave Filters, IEE Electromagnetic Waves Series, 2001

[2] Cameron R. J., Kudsia Ch. M., Mansour R.: Microwave Filters for Communication Systems, Wiley 2018

[3] Jia-Sheng Hong: Microstrip Filters for RF / Microwave Applications, Wiley 2011

No.	Description	Number of hours
1	Hours of scheduled instruction given by the academic teacher in the classroom	45
2	Hours of consultations with the academic teacher, exams, tests, etc.	5
3	Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework	30
4	Amount of time devoted to the preparation for exams, test, assessments	10
	Total number of hours	90
	ECTS credits	3